
Mimic Defense Benchmark Function Experiment

The test based on the expected effect of the mimic defense theory is called benchmark function

experiment, also called definition based effect test of mimic defense. There are usually two types

of tests for mimic defense, one is the traditional security test, which mainly tests the vulnerability

display and attack reachability, the other is the test case injection experiment, also called “white

box instrumentation” experiment, which requires to accurately identify whether the tested target

has the basic mimic defense function and whether it has the capabilities to deal with attack escape

according to examples for product test standards, without relying on the experimenter's experience

and skills. This section will focus on the white box instrumentation experiment.

Prerequisite and arrangement

On the basis of the threat analysis and security design of the given mimic structure of a tested

object, with the input path, syntax and semantics, and rules and methods in the mimic brackets as

the normalized attack surface, the experiment examines if the design of security, reliability and

availability of the tested object can meet the alleged quantifiable indicators in the “white box

testing” by injecting some given test cases or test case sets through the attack path on the mimic

bracket surface. It should be pointed out that the mimic structure usually contains two big types of

functions and performance. The white box injection approach can only be used to check the

endogenous security function and relevant performance of the mimic structure, without causing

unrecoverable damage to other functions or performance of it. The test of security, reliability and

availability outside the mimic structure is not included in the experiment.

Experiment arrangement:

(1) One agreed test case consists of two parts, namely, the test interface embedded in the

target source program and the test code injected through the attack reachable path.

(2) Any code functions of test interfaces embedded in the tested target executor or

operational scenario are the same, including the functions of receiving instruction code through

the attack surface path and compliant method, or of updating the test content.

(3) The test codes injected through the test interface are memory resident executable codes,

and should not lead to unrecoverable damage to the tested target function.

(4) The test codes shall have the ability to influence the output vector content of the resident

executor or operational scenario, or to control its output ability.

(5) The test cases whose every two test code functions are different are called

“differential mode test cases”, and those whose every two test code functions are the same are

called “common mode test cases”.

(6) All the executors or operational scenario F can, in principle, have test interfaces, but at

the same time, the number f of resident test codes shall satisfy n≤f≤F/2, and n is the redundancy of

the current service scenario in the mimic brackets.

(7) During the experiment stage, open the system management interface to observe the

entire experiment process.

Structure of test cases

Usually, the hardware and software supporting environment of the test target’s

heterogeneous executor or operational scenarios has only the executable target codes or even

physical devices, so the test case is not only difficult to be constructed, but often cannot be

injected. Even if the test case can be implanted, its function verification is rather challenging.

Therefore, it’s a possible choice to construct the test case interface and design the invoking

function at the application source code level. The test interface should be designed to have a

“backdoor function” that is activated by input channels and compliance method of the attack

surface in the mimic brackets, and can receive the uploaded test code through the attack surface. It

can perform online control of injection test code through applications. Of course, under certain

conditions, the test interface and related functions may also be set up at other levels (e.g.,

operating system level). It should be noted that in addition to the test interface code, the uploaded

target test code should be the executable code resident in the memory to flexibly define or change

the test function, and enhance the completeness of injection test.

It should be explained that there are two goals for setting up an experiment interface at the

application level and for injecting test codes through the attack surface. One is that the experiment

result is credible. Any attacks based on vulnerabilities and backdoors at any layer cannot directly

or indirectly threaten the security goal of the system until they can precisely control the expression

of output vectors of the target executors or operational scenarios (the ultimate goal the attacks can

reach), ensuring that the application software invoke the test interface function as per the agreed

requirements and activate the injected test code. The other is to observe the resource configuration

of the executors or operational scenarios through the system management interface. By changing

the injection test code, you can verify the CUP type, OS version and other information of the

operating environment, and specify the target execution environment for the test code .

2) Differential mode test case injection experiment

Prerequisite: Assume that the test target function satisfies I[p1,p2,p3,…,pn]O, among which

all functions pi are the same, i.e. p1=p2=…=pn but the pi implementation algorithms are all

different, that is, pc1≠pc2≠…≠pci. If there is a test case e1 that could make p1 generate an output

vector outside the normal response sequence s1. By analogy, test cases e2 e3 ei can lead p2 p3 pi to

generate output vector s2 s3 si and s1≠s2≠s3≠si, then, according to the definition of mimic defense

effect, if test cases e1 e2 e3 ei, which do not have a cooperative relationship with each other are

injected into executors p1 p2 p3 pi or defense scenarios respectively through the attack surface, then

no si should appear on the mimic interface of I[P]O. The mimic defense function of the tested

target should be able to clearly indicate that, except for the shutdown paralysis event that cannot

recover automatically, the suppression effect of the differential mode test cases can be 100%

achieved as long as the “lone wolf attack” differential mode test case does not have a

cooperative relationship, and the test case can generate an action perceivable by the arbiter, which

can be cleared or removed before the activation of another test case.

Tri-redundancy mimicry function experiment

Note: Test cases a, b, c have

different functions

Inject differential-mode

test case a to Executor B BInject differential-mode

test case a to Executor A
A

Inject differential-mode

test case a to Executor C
C

Differential-mode injection experiment

1

2

1

1

2

2

A

C

B

Figure 1: Injection experiment of differential mode test cases

Figure 1 illustrates an experimental scenario with a tri redundancy mimicry function. All

the differential mode (with different functions) test cases that fall within the three executor regions

A, B, and C, should be designed as scenarios that could be perceived by the mimic ruling phase.

According to the feedback control strategy and the iterative convergence backward verification

mechanisms of mimic structure, another expected result of the experiment is that the problematic

executor or operational scenario is either replaced, reconfigured or reconstructed, or cleaned,

recovered or restarted by latching onto the executor or operational scenario with injected test cases.

The related experimental scenarios and operation processes should be observed.

3) Experiment of the time cooperative differential mode test cases

Experiment goal: based on injection experiment of the differential mode test cases,

distribute f differential mode test cases evenly among m defense scenarios of n executors in the

mimic structure (m≥n), the ratio of DM test cases f to m is F=f/m﹡100%, subject to 34%≤F≤50%.

The experimenter sends the activation instruction to f test cases consecutively through the attack

surface to observe the functionality and performance of the target object, focusing on (a) possible

differential mode escape in the experiment process; (b) degradation of functionality and

performance of the target object in the process; and (c) how long it takes for the problem

avoidance mechanism to keep relevant defense scenarios from being re invoked.

Experiment plan: ① Test the recovery time of the sampled executor defense scenarios to

determine the consecutive activation strategy of f test cases; ② decide on the deployment

strategy (e.g., even distribution) of f test cases in m scenarios, given the Ratio F is 34%, 40% or

50%; ③ measure the functionality and performance of the target object in the experiment

process to verify the design indicators of reliability and availability, with emphasis laid on the

measurement of the time of the same group of time cooperative differential mode test cases

from “attack reachability to unreachability”, which tests the validity of avoidance mechanism of

the target object in problematic scenarios; ④ for other methods and operations, please refer to

the injection experiment of differential mode test cases. Please note that the values of F shall be

higher than the failure tolerance limit of the classic DRS, f≤(n 1)/2. For instance, if n=m=3, DRS

allows f≤1, and the corresponding ratio F≤33.3%,while the experimental values of the

time cooperative differential mode test cases are F=34%, 40% and 50%, which correspond to the

worst condition of the DRS at n=3, 5 and infinite redundancy.

4) n−1 mode test case injection experiment

The experiment aims to check that the mimic structure should still have the ability to

recover from the escape state in case a n 1 common mode perceivable escape (n is the

redundancy of the current service set) occurs in the mimic interface, and prove that the mimic

structure still have the expected probability even a common mode escape event occurs. The

n 1 common mode escape is a small or tiny probability event in quantifiable design of security,

however, failure to get rid of common mode escapes in the engineering implementation of the

object will make the attack experience replicable but no longer be a probability event whenever a

first common mode escape successful happens. The n 1 common mode escape experiment

not only verifies the correctness of the mimic function, but also test the duration of the recovery

process, the latter can quantitatively evaluate the performance of resisting common mode

escapes. Also, the whole experiment process and effect shall be observable.

The injection experiment of n 1 common mode test cases stipulates that, when the number of

executors or defense scenarios in the current service set of the mimic structure is n, suppose a test

case ti can be injected into n 1 executors or defense scenarios and can be activated through the

attack surface in a way to generate n 1 same output vector si, then, as per the mimic defense

definition, mimic escape may probably occur in the I[P]O mimic interface, but the arbiter can

perceive the inconsistency between multimode output vectors. In other words, the n 1

common mode escape is a kind of perceivable escape. As a result, the feedback control phase

will decide how to change the defense scenario in the mimic brackets by asymptotic or iterative

convergence method according to the pre designed backward verification strategy (the relevant

auxiliary ruling strategy is needed to tell the difference between differential mode scenarios and

n 1 common mode scenarios), degenerate it into the differential mode experiment form as shown

in Figure 1, and finally remove or clear it.

Note: Test cases a, b, c, have

different functions

Tri-redundancy mimicry function experiment

Inject functional test

case a into B∩C

Inject functional test

case C into A∩B

Inject functional test

case b into A∩C

2

2

2

2

2 2

3

A B

C

3
3

3

3

3

1
1

1

N-1 mode injection experiment

Figure 2: n 1 mode test case injection experiment

 Figure 2 illustrates the experiment of an anti n 1 common mode escape in a tri redundancy

mimic structure. It shows that common mode test cases a, b, and c are injected respectively into

the intersections of executors (defense scenarios) A and B, A and C, B and C. It also shows the

path (shown in dotted lines of different colors) from which these test cases were removed or

cleared from the executors or operational scenarios. Assume that the n−1 mode common mode test

case can be injected into the functional intersection of any two executors or operational scenarios,

and be enabled to generate the same output vector by inputting channel compliant activation

messages through the attack surface, then, according to the definition of mimic defense, the arbiter

can perceive the inconsistency in the multi mode output vector but cannot directly identify the

problematic executor or operational scenario and needs to distinguish and eliminate the effect of

the injected test case through the backward verification mechanism. To do this, the first step is to

clear, restart or replace the executors or operational scenarios with inconsistent output vectors. If

the status of the arbiter remains unchanged, choose one object from among the executors or

operational scenarios with the same output vectors according to a certain strategy to repeat the

previous step. Secondly, observe the status of the arbiter. If the status reverses, it would degenerate

into the differential mode status shown in Figure 1. In this case, repeat the above step on

executors not updated in the service set, and the injected test case will be cleared or removed from

the current service set. Therefore, according to the mimic defense definition, even if the n−1

common mode attacks succeed, their escape states are not stably robust.

It should be pointed out that, when the n 1 mode test cases can be activated simultaneously,

they may be recognized as differential mode attacks due to the inherent mechanism of the mimic

structure, they cannot ensure steady display of the n 1 mode escape statue, so they shall be

repeatedly injected and activated until the expected n 1 mode escape status appears in the

experiment. The whole process of the experimentation should be observable.

It is clear that the mimic structure system has a feature that “an escape cannot be steadily

sustained even if it is successful”. Although the system cannot replace all the functions of the

traditional information security measures, it has the resilience that the latter does not. Especially

when dealing with attackers who attempt to obtain sensitive information or sabotage the integrity

of information through differential mode attacks, the mimic defense may be even more

advantageous than general encryption measures. As mimic defense is not a computable problem, it

will not fall into the dilemma “where once it is breached by brute force, the whole defense system

will collapse”.

5) n mode test case injection experiment

As its definition dictates, the mimic structure supports quantifiable design and features a tiny

probability of n mode escape, which, unlike the n 1 mode escape, is mechanically

unperceivable to the mimic structure. Therefore, to ensure the potential occurrence of the

n mode escape, it is necessary to employ a certain external or internal strategy to disturb the

feedback control loop, change the current operating environment inside the mimic brackets into

the n 1 mode perceivable form, and enter the relevant disengagement or recovery process,

ensuring that the n mode escape, if happens, is still a probability event. The function needs to be

checked through the white box test of injected test cases, and measured and verified for the

nominal time it takes to finish the disengagement according to the preset loop perturbation

strategy.

As shown in Figure 3, assume that the injected n mode test case can produce consistent output

vectors within the functional intersection of the three executors A∩B∩C, then it should not be

perceived theoretically in the mimic ruling phase. However, according to the definition of mimic

defense, even if the arbiter does not find any output vector anomaly, the executors or defense

scenarios in the current service set may experience a forced and non deterministic replacement

or cleaning and restart operation due to an external control instruction. This means that under the

n mode injected test conditions, the escape state is surely unstable, and when the executors or

defense scenarios themselves have the cleaning, restart, reconfiguration or reconstruction

functions, the n mode unperceivable escape should automatically turn into the n 1 mode

perceivable escape status as the recovery progresses, and eventually degenerate into a

differential mode context and be removed unperceivably. That is, the n mode test cases

injected through the attack surface into the service set are removed since the host executor or

operational scenario is strategically cleaned and restarted, or reconfigured and reconstructed by an

external instruction. If the backward verification policy prescribes that executor C goes through a

routine cleaning and then rejoins the current service set (may also directly reconfigure or replace

executor C), then if the output vectors of C (or its substitute) are still inconsistent with those of A

and B, the feedback loop will prioritize cleaning or replacement of the executor with the longest

running duration (such as A).

Tri-redundancy mimicry function experiment

A B

C

N-mode injection experiment

4

4

4

4

4

4

3

33

3

3

3

2

22

Inject test cases

A∩B∩C

A C

B C

A B

Figure 3: n mode test case injection experiment

Thus, when the arbiter finds that the AC output vectors are different from those of B, it indicates

that an escape phenomenon (i.e., the scenario in Figure 2) has occurred in the scenario, and the

above steps are performed on B until the arbiter no longer perceives the inconsistency. Tracing the

migration trajectory shown by the dotted line in the above figure, the n mode test case scene will

regress into the n 1 mode test scenario, and finally to the differential mode test scenario until

all test cases are removed. We can see that in a mimic defense environment, even if the attacker

has the ability to implement a n mode or cross domain coordinated attack and achieve a

temporary escape, he will not be mechanically capable of maintaining a stable escape, and

therefore the robustness of attack effect remains an insurmountable challenge. It should be pointed

out that, when the n mode test cases can be activated simultaneously, they may be recognized as

differential mode or n 1 mode attacks due to the inherent mechanism of the mimic structure,

they cannot ensure steady display of the n mode escape statue, so they shall be repeatedly

injected and activated until the expected n mode escape status appears in the experiment.

6) Injection test in the feedback control loop

The mimicry feedback control loop consists of three parts: input allocation and proxy, output

ruling and proxy, and feedback control. According to the definition of mimic defense, the

input/output channel between the feedback loop and the executors and mimic brackets allow for

“one way communication mechanism” only, and for one prerequisite that the feedback control

loop may have vulnerabilities (really inevitable) but must not have malicious codes (this can be

satisfied engineeringly in low complex cases) (as shown in Figure 4).

 Figure 4: Unidirectional mechanism verification in mimic brackets

According to the strict unidirectional communication mechanism, the Trojans in the executor

should not be able to use the loopholes in the feedback loop to inject the attack code or achieve

tunnel through. Similarly, the mimic bracket function is usually “transparent” to external

attackers, which means that either the input assignment and proxy on the input channel, or the

output ruling and proxy on the output channel, or the feedback control for internal policy and

schedule should all be “invisible.”

In theory, the mimic brackets neither resolve the input incentive sequence content nor care about

the syntax and semantics of the multimode output vector, so they are unreachable to threat targets.

However, in engineering implementation, you have to care about the isolated import and load

balance of the input excitation sequence, and have to import the agent system. Oftentimes, the

mimic ruling cannot avoid the uncertainty of some optional value ranges and communication

serial numbers of multi mode output vectors of the heterogeneous redundant executors. This,

together with the difference in computation precision, requires that the mimic brackets must be

opaque in syntax and semantics. There will be an increasing probability of the existence of

unknown vulnerabilities as the function of bracket parts gets more complex or their intelligent

processing capability gets stronger. However, mimic brackets can be considered to be up to the

basic security requirements if the design can ensure that their parts will not be exploited even if

they contain viruses. The white box testing aims to check if it is possible to set vulnerability test

interfaces on some parts, if the test codes can be uploaded through the vulnerability interfaces, and

if mimic escape can be achieved via the uploaded test codes. Sometimes, this method may not

work due to the technological form of the object. For example, the vulnerability test interfaces

cannot be set and the test codes cannot be uploaded and executed when passive optical splitters or

wiring logic devices are used as input agent parts, or the encryption mechanism is introduced into

them. If so, it can be considered that the input agent parts are born with an attribute that their

vulnerabilities are unavailable. Similarly, failure to upload the test codes through the mimic

brackets specified path via the input agent parts and heterogeneous executors to the output agent

parts or the arbiter for execution signifies that the output agent parts or the arbiter also have an

attribute that their vulnerabilities are unavailable. Obviously, this attribute is not inherent in these

parts, it derives mainly from the mimic structural effect. It should be noted that event if the test

cases can be injected with test vulnerabilities of relevant mimic bracket parts from outside the

mimic interface, the brackets may still be considered to meet the assumption that the

vulnerabilities are unavailable on condition that no mimic escape can be achieved. In short, the

security technologies are often required in engineering practice to guarantee that the mimic

brackets shall not become the “short plate” of defense for the set security goal even if they contain

design flaws and vulnerabilities.

7) Performance measurement. In the above mentioned tests, the time from activation of the test

case to disabling them should be measured in order to evaluate whether the converging speed,

actuating performance or scenario avoidance precision of the feedback control loop have met the

requirements of the system design.

No matter what types the common mode test cases are, the mimic defense shall always be able

to get out of the escape state. Maybe different design schemes lead to different time of

disengagement, and to different cost of implementation. However, the function of disengagement

from the common mode escape is indispensable because “failure to maintain a successful attack

escape” is the high availability goal of mimic defense. Similarly, you can test the reliability

design of the target object with the differential mode test cases. The author declares that it is

feasible to set confidentiality inspection function in the injected test cases in the mimic structure

on condition that there are no side channel attacks launched by taking advantage of the physical

(acoustic, optical, electrical, magnetic and thermal) effects or the resources shared with other

non mimic structure tasks.

